- 노드와 엣지로 구성된 그래프 형태로 에이전트를 정의하려면 Graph API 사용하기를 참고하세요.
- 단일 함수 형태로 에이전트를 정의하려면 Functional API 사용하기를 참고하세요.
개념적인 내용은 Graph API 개요와 Functional API 개요를 참고하세요.
이 예제를 실행하려면 Claude (Anthropic) 계정을 만들고 API 키를 발급받아야 합니다. 발급받은 API 키는 터미널에서
ANTHROPIC_API_KEY 환경 변수로 설정해주세요.- Use the Graph API
- Use the Functional API
1. 도구와 모델 정의하기
이 예제에서는 Claude Sonnet 4.5 모델을 사용하고, 덧셈, 곱셈, 나눗셈을 수행하는 도구를 정의합니다.Copy
import { ChatAnthropic } from "@langchain/anthropic";
import { tool } from "@langchain/core/tools";
import * as z from "zod";
const model = new ChatAnthropic({
model: "claude-sonnet-4-5",
temperature: 0,
});
// Define tools
const add = tool(({ a, b }) => a + b, {
name: "add",
description: "Add two numbers",
schema: z.object({
a: z.number().describe("First number"),
b: z.number().describe("Second number"),
}),
});
const multiply = tool(({ a, b }) => a * b, {
name: "multiply",
description: "Multiply two numbers",
schema: z.object({
a: z.number().describe("First number"),
b: z.number().describe("Second number"),
}),
});
const divide = tool(({ a, b }) => a / b, {
name: "divide",
description: "Divide two numbers",
schema: z.object({
a: z.number().describe("First number"),
b: z.number().describe("Second number"),
}),
});
// Augment the LLM with tools
const toolsByName = {
[add.name]: add,
[multiply.name]: multiply,
[divide.name]: divide,
};
const tools = Object.values(toolsByName);
const modelWithTools = model.bindTools(tools);
2. 상태 정의하기
그래프의 상태는 메시지와 LLM 호출 횟수를 저장하는 데 사용됩니다.LangGraph의 상태는 에이전트 실행 전체에 걸쳐 유지됩니다.
Annotated 타입과 operator.add를 함께 사용하면, 새로운 메시지가 기존 목록을 대체하지 않고 추가되도록 보장합니다.Copy
import { StateGraph, START, END } from "@langchain/langgraph";
import { MessagesZodMeta } from "@langchain/langgraph";
import { registry } from "@langchain/langgraph/zod";
import { type BaseMessage } from "@langchain/core/messages";
const MessagesState = z.object({
messages: z
.array(z.custom<BaseMessage>())
.register(registry, MessagesZodMeta),
llmCalls: z.number().optional(),
});
3. 모델 노드 정의하기
모델 노드는 LLM을 호출하고 도구를 호출할지 여부를 결정하는 데 사용됩니다.Copy
import { SystemMessage } from "@langchain/core/messages";
async function llmCall(state: z.infer<typeof MessagesState>) {
return {
messages: await modelWithTools.invoke([
new SystemMessage(
"You are a helpful assistant tasked with performing arithmetic on a set of inputs."
),
...state.messages,
]),
llmCalls: (state.llmCalls ?? 0) + 1,
};
}
4. 도구 노드 정의하기
도구 노드는 도구를 호출하고 결과를 반환하는 데 사용됩니다.Copy
import { isAIMessage, ToolMessage } from "@langchain/core/messages";
async function toolNode(state: z.infer<typeof MessagesState>) {
const lastMessage = state.messages.at(-1);
if (lastMessage == null || !isAIMessage(lastMessage)) {
return { messages: [] };
}
const result: ToolMessage[] = [];
for (const toolCall of lastMessage.tool_calls ?? []) {
const tool = toolsByName[toolCall.name];
const observation = await tool.invoke(toolCall);
result.push(observation);
}
return { messages: result };
}
5. 종료 로직 정의하기
조건부 엣지 함수는 LLM이 도구를 호출했는지 여부에 따라 도구 노드로 라우팅하거나 종료하는 데 사용됩니다.Copy
async function shouldContinue(state: z.infer<typeof MessagesState>) {
const lastMessage = state.messages.at(-1);
if (lastMessage == null || !isAIMessage(lastMessage)) return END;
// If the LLM makes a tool call, then perform an action
if (lastMessage.tool_calls?.length) {
return "toolNode";
}
// Otherwise, we stop (reply to the user)
return END;
}
6. 에이전트 빌드 및 컴파일하기
에이전트는StateGraph 클래스를 사용하여 빌드하고, @[compile][StateGraph.compile] 메서드로 컴파일합니다.Copy
const agent = new StateGraph(MessagesState)
.addNode("llmCall", llmCall)
.addNode("toolNode", toolNode)
.addEdge(START, "llmCall")
.addConditionalEdges("llmCall", shouldContinue, ["toolNode", END])
.addEdge("toolNode", "llmCall")
.compile();
// Invoke
import { HumanMessage } from "@langchain/core/messages";
const result = await agent.invoke({
messages: [new HumanMessage("Add 3 and 4.")],
});
for (const message of result.messages) {
console.log(`[${message.getType()}]: ${message.text}`);
}
Full code example
Full code example
Copy
// Step 1: Define tools and model
import { ChatAnthropic } from "@langchain/anthropic";
import { tool } from "@langchain/core/tools";
import * as z from "zod";
const model = new ChatAnthropic({
model: "claude-sonnet-4-5",
temperature: 0,
});
// Define tools
const add = tool(({ a, b }) => a + b, {
name: "add",
description: "Add two numbers",
schema: z.object({
a: z.number().describe("First number"),
b: z.number().describe("Second number"),
}),
});
const multiply = tool(({ a, b }) => a * b, {
name: "multiply",
description: "Multiply two numbers",
schema: z.object({
a: z.number().describe("First number"),
b: z.number().describe("Second number"),
}),
});
const divide = tool(({ a, b }) => a / b, {
name: "divide",
description: "Divide two numbers",
schema: z.object({
a: z.number().describe("First number"),
b: z.number().describe("Second number"),
}),
});
// Augment the LLM with tools
const toolsByName = {
[add.name]: add,
[multiply.name]: multiply,
[divide.name]: divide,
};
const tools = Object.values(toolsByName);
const modelWithTools = model.bindTools(tools);
// Step 2: Define state
import { StateGraph, START, END } from "@langchain/langgraph";
import { MessagesZodMeta } from "@langchain/langgraph";
import { registry } from "@langchain/langgraph/zod";
import { type BaseMessage } from "@langchain/core/messages";
const MessagesState = z.object({
messages: z
.array(z.custom<BaseMessage>())
.register(registry, MessagesZodMeta),
llmCalls: z.number().optional(),
});
// Step 3: Define model node
import { SystemMessage } from "@langchain/core/messages";
async function llmCall(state: z.infer<typeof MessagesState>) {
return {
messages: await modelWithTools.invoke([
new SystemMessage(
"You are a helpful assistant tasked with performing arithmetic on a set of inputs."
),
...state.messages,
]),
llmCalls: (state.llmCalls ?? 0) + 1,
};
}
// Step 4: Define tool node
import { isAIMessage, ToolMessage } from "@langchain/core/messages";
async function toolNode(state: z.infer<typeof MessagesState>) {
const lastMessage = state.messages.at(-1);
if (lastMessage == null || !isAIMessage(lastMessage)) {
return { messages: [] };
}
const result: ToolMessage[] = [];
for (const toolCall of lastMessage.tool_calls ?? []) {
const tool = toolsByName[toolCall.name];
const observation = await tool.invoke(toolCall);
result.push(observation);
}
return { messages: result };
}
// Step 5: Define logic to determine whether to end
async function shouldContinue(state: z.infer<typeof MessagesState>) {
const lastMessage = state.messages.at(-1);
if (lastMessage == null || !isAIMessage(lastMessage)) return END;
// If the LLM makes a tool call, then perform an action
if (lastMessage.tool_calls?.length) {
return "toolNode";
}
// Otherwise, we stop (reply to the user)
return END;
}
// Step 6: Build and compile the agent
const agent = new StateGraph(MessagesState)
.addNode("llmCall", llmCall)
.addNode("toolNode", toolNode)
.addEdge(START, "llmCall")
.addConditionalEdges("llmCall", shouldContinue, ["toolNode", END])
.addEdge("toolNode", "llmCall")
.compile();
// Invoke
import { HumanMessage } from "@langchain/core/messages";
const result = await agent.invoke({
messages: [new HumanMessage("Add 3 and 4.")],
});
for (const message of result.messages) {
console.log(`[${message.getType()}]: ${message.text}`);
}
Connect these docs programmatically to Claude, VSCode, and more via MCP for real-time answers.