Skip to main content
GROBID는 학술 과학 출판물에서 정보를 추출하기 위해 특별히 훈련된 기계 학습 라이브러리입니다. GrobidLoader는 PDF 경로 또는 grobid_url 인수를 통해 제공된 Grobid REST 서비스를 사용합니다.
from langchain_community.document_loaders.parsers import GrobidParser
from langchain_community.document_loaders.generic import GenericLoader
loader = GenericLoader.from_filesystem(
    "../Papers/",
    glob="*",
    suffixes=[".pdf"],
    parser=GrobidParser(segment_sentences=False),
)
docs = loader.load()
docs[3].page_content
'unlike Chinchilla, PaLM, or GPT-3. We only use publicly available data, making our work compatible with open-sourcing, while most existing models rely on data which is either not publicly available or undocumented (e.g."Books -2TB" or "Social media conversations").There exist some exceptions, notably OPT (Zhang et al., 2022), GPT-NeoX (Black et al., 2022), BLOOM (Scao et al., 2022) and GLM (Zeng et al., 2022), but none that are competitive with PaLM-62B or Chinchilla.\n\n'
docs[3].metadata
{'text': 'unlike Chinchilla, PaLM, or GPT-3. We only use publicly available data, making our work compatible with open-sourcing, while most existing models rely on data which is either not publicly available or undocumented (e.g."Books -2TB" or "Social media conversations").There exist some exceptions, notably OPT (Zhang et al., 2022), GPT-NeoX (Black et al., 2022), BLOOM (Scao et al., 2022) and GLM (Zeng et al., 2022), but none that are competitive with PaLM-62B or Chinchilla.\n\n',
 'para': '2',
 'bboxes': "[[{'page': '1', 'x': '317.05', 'y': '509.17', 'h': '207.73', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '522.72', 'h': '220.08', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '536.27', 'h': '218.27', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '549.82', 'h': '218.65', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '563.37', 'h': '136.98', 'w': '9.46'}], [{'page': '1', 'x': '446.49', 'y': '563.37', 'h': '78.11', 'w': '9.46'}, {'page': '1', 'x': '304.69', 'y': '576.92', 'h': '138.32', 'w': '9.46'}], [{'page': '1', 'x': '447.75', 'y': '576.92', 'h': '76.66', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '590.47', 'h': '219.63', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '604.02', 'h': '218.27', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '617.56', 'h': '218.27', 'w': '9.46'}, {'page': '1', 'x': '306.14', 'y': '631.11', 'h': '220.18', 'w': '9.46'}]]",
 'pages': "('1', '1')",
 'section_title': 'Introduction',
 'section_number': '1',
 'paper_title': 'LLaMA: Open and Efficient Foundation Language Models',
 'file_path': '/Users/31treehaus/Desktop/Papers/2302.13971.pdf'}

Connect these docs programmatically to Claude, VSCode, and more via MCP for real-time answers.
I