Skip to main content
@[RecursiveCharacterTextSplitter]는 특정 프로그래밍 언어로 작성된 텍스트를 분할하는 데 유용한 구분자 목록을 사전에 포함하고 있습니다. 지원되는 언어는 langchain_text_splitters.Language 열거형에 저장되어 있습니다. 포함되는 언어는 다음과 같습니다:
"cpp",
"go",
"java",
"kotlin",
"js",
"ts",
"php",
"proto",
"python",
"rst",
"ruby",
"rust",
"scala",
"swift",
"markdown",
"latex",
"html",
"sol",
"csharp",
"cobol",
"c",
"lua",
"perl",
"haskell"
특정 언어에 대한 구분자 목록을 확인하려면 이 열거형의 값을 다음 메서드에 전달하세요:
RecursiveCharacterTextSplitter.get_separators_for_language
특정 언어에 맞춤화된 분할기를 인스턴스화하려면 열거형의 값을 다음 메서드에 전달하세요:
RecursiveCharacterTextSplitter.from_language
아래에서는 다양한 언어에 대한 예제를 제시합니다.
pip install -qU langchain-text-splitters
from langchain_text_splitters import (
    Language,
    RecursiveCharacterTextSplitter,
)
지원되는 전체 언어 목록을 확인하려면:
[e.value for e in Language]
['cpp',
 'go',
 'java',
 'kotlin',
 'js',
 'ts',
 'php',
 'proto',
 'python',
 'rst',
 'ruby',
 'rust',
 'scala',
 'swift',
 'markdown',
 'latex',
 'html',
 'sol',
 'csharp',
 'cobol',
 'c',
 'lua',
 'perl',
 'haskell',
 'elixir',
 'powershell',
 'visualbasic6']
특정 언어에 사용되는 구분자도 확인할 수 있습니다:
RecursiveCharacterTextSplitter.get_separators_for_language(Language.PYTHON)
['\nclass ', '\ndef ', '\n\tdef ', '\n\n', '\n', ' ', '']

Python

다음은 PythonTextSplitter를 사용하는 예제입니다:
PYTHON_CODE = """
def hello_world():
    print("Hello, World!")

# Call the function
hello_world()
"""
python_splitter = RecursiveCharacterTextSplitter.from_language(
    language=Language.PYTHON, chunk_size=50, chunk_overlap=0
)
python_docs = python_splitter.create_documents([PYTHON_CODE])
python_docs
[Document(metadata={}, page_content='def hello_world():\n    print("Hello, World!")'),
 Document(metadata={}, page_content='# Call the function\nhello_world()')]

JS

다음은 JS 텍스트 분할기를 사용하는 예제입니다:
JS_CODE = """
function helloWorld() {
  console.log("Hello, World!");
}

// Call the function
helloWorld();
"""

js_splitter = RecursiveCharacterTextSplitter.from_language(
    language=Language.JS, chunk_size=60, chunk_overlap=0
)
js_docs = js_splitter.create_documents([JS_CODE])
js_docs
[Document(metadata={}, page_content='function helloWorld() {\n  console.log("Hello, World!");\n}'),
 Document(metadata={}, page_content='// Call the function\nhelloWorld();')]

TS

다음은 TypeScript 텍스트 분할기를 사용하는 예제입니다:
TS_CODE = """
function helloWorld(): void {
  console.log("Hello, World!");
}

// Call the function
helloWorld();
"""

ts_splitter = RecursiveCharacterTextSplitter.from_language(
    language=Language.TS, chunk_size=60, chunk_overlap=0
)
ts_docs = ts_splitter.create_documents([TS_CODE])
ts_docs
[Document(metadata={}, page_content='function helloWorld(): void {'),
 Document(metadata={}, page_content='console.log("Hello, World!");\n}'),
 Document(metadata={}, page_content='// Call the function\nhelloWorld();')]

Markdown

다음은 Markdown 텍스트 분할기를 사용하는 예제입니다:
markdown_text = """
# 🦜️🔗 LangChain

⚡ Building applications with LLMs through composability ⚡

## What is LangChain?

# Hopefully this code block isn't split
LangChain is a framework for...

As an open-source project in a rapidly developing field, we are extremely open to contributions.
"""
md_splitter = RecursiveCharacterTextSplitter.from_language(
    language=Language.MARKDOWN, chunk_size=60, chunk_overlap=0
)
md_docs = md_splitter.create_documents([markdown_text])
md_docs
[Document(metadata={}, page_content='# 🦜️🔗 LangChain'),
 Document(metadata={}, page_content='⚡ Building applications with LLMs through composability ⚡'),
 Document(metadata={}, page_content='## What is LangChain?'),
 Document(metadata={}, page_content="# Hopefully this code block isn't split"),
 Document(metadata={}, page_content='LangChain is a framework for...'),
 Document(metadata={}, page_content='As an open-source project in a rapidly developing field, we'),
 Document(metadata={}, page_content='are extremely open to contributions.')]

Latex

다음은 Latex 텍스트를 사용하는 예제입니다:
latex_text = """
\documentclass{article}

\begin{document}

\maketitle

\section{Introduction}
Large language models (LLMs) are a type of machine learning model that can be trained on vast amounts of text data to generate human-like language. In recent years, LLMs have made significant advances in a variety of natural language processing tasks, including language translation, text generation, and sentiment analysis.

\subsection{History of LLMs}
The earliest LLMs were developed in the 1980s and 1990s, but they were limited by the amount of data that could be processed and the computational power available at the time. In the past decade, however, advances in hardware and software have made it possible to train LLMs on massive datasets, leading to significant improvements in performance.

\subsection{Applications of LLMs}
LLMs have many applications in industry, including chatbots, content creation, and virtual assistants. They can also be used in academia for research in linguistics, psychology, and computational linguistics.

\end{document}
"""
latex_splitter = RecursiveCharacterTextSplitter.from_language(
    language=Language.MARKDOWN, chunk_size=60, chunk_overlap=0
)
latex_docs = latex_splitter.create_documents([latex_text])
latex_docs
[Document(metadata={}, page_content='\\documentclass{article}\n\n\x08egin{document}\n\n\\maketitle'),
 Document(metadata={}, page_content='\\section{Introduction}'),
 Document(metadata={}, page_content='Large language models (LLMs) are a type of machine learning'),
 Document(metadata={}, page_content='model that can be trained on vast amounts of text data to'),
 Document(metadata={}, page_content='generate human-like language. In recent years, LLMs have'),
 Document(metadata={}, page_content='made significant advances in a variety of natural language'),
 Document(metadata={}, page_content='processing tasks, including language translation, text'),
 Document(metadata={}, page_content='generation, and sentiment analysis.'),
 Document(metadata={}, page_content='\\subsection{History of LLMs}'),
 Document(metadata={}, page_content='The earliest LLMs were developed in the 1980s and 1990s,'),
 Document(metadata={}, page_content='but they were limited by the amount of data that could be'),
 Document(metadata={}, page_content='processed and the computational power available at the'),
 Document(metadata={}, page_content='time. In the past decade, however, advances in hardware and'),
 Document(metadata={}, page_content='software have made it possible to train LLMs on massive'),
 Document(metadata={}, page_content='datasets, leading to significant improvements in'),
 Document(metadata={}, page_content='performance.'),
 Document(metadata={}, page_content='\\subsection{Applications of LLMs}'),
 Document(metadata={}, page_content='LLMs have many applications in industry, including'),
 Document(metadata={}, page_content='chatbots, content creation, and virtual assistants. They'),
 Document(metadata={}, page_content='can also be used in academia for research in linguistics,'),
 Document(metadata={}, page_content='psychology, and computational linguistics.'),
 Document(metadata={}, page_content='\\end{document}')]

HTML

다음은 HTML 텍스트 분할기를 사용하는 예제입니다:
html_text = """
<!DOCTYPE html>
<html>
    <head>
        <title>🦜️🔗 LangChain</title>
        <style>
            body {
                font-family: Arial, sans-serif;
            }
            h1 {
                color: darkblue;
            }
        </style>
    </head>
    <body>
        <div>
            <h1>🦜️🔗 LangChain</h1>
            <p>⚡ Building applications with LLMs through composability ⚡</p>
        </div>
        <div>
            As an open-source project in a rapidly developing field, we are extremely open to contributions.
        </div>
    </body>
</html>
"""
html_splitter = RecursiveCharacterTextSplitter.from_language(
    language=Language.HTML, chunk_size=60, chunk_overlap=0
)
html_docs = html_splitter.create_documents([html_text])
html_docs
[Document(metadata={}, page_content='<!DOCTYPE html>\n<html>'),
 Document(metadata={}, page_content='<head>\n        <title>🦜️🔗 LangChain</title>'),
 Document(metadata={}, page_content='<style>\n            body {\n                font-family: Aria'),
 Document(metadata={}, page_content='l, sans-serif;\n            }\n            h1 {'),
 Document(metadata={}, page_content='color: darkblue;\n            }\n        </style>\n    </head'),
 Document(metadata={}, page_content='>'),
 Document(metadata={}, page_content='<body>'),
 Document(metadata={}, page_content='<div>\n            <h1>🦜️🔗 LangChain</h1>'),
 Document(metadata={}, page_content='<p>⚡ Building applications with LLMs through composability ⚡'),
 Document(metadata={}, page_content='</p>\n        </div>'),
 Document(metadata={}, page_content='<div>\n            As an open-source project in a rapidly dev'),
 Document(metadata={}, page_content='eloping field, we are extremely open to contributions.'),
 Document(metadata={}, page_content='</div>\n    </body>\n</html>')]

Solidity

다음은 Solidity 텍스트 분할기를 사용하는 예제입니다:
SOL_CODE = """
pragma solidity ^0.8.20;
contract HelloWorld {
   function add(uint a, uint b) pure public returns(uint) {
       return a + b;
   }
}
"""

sol_splitter = RecursiveCharacterTextSplitter.from_language(
    language=Language.SOL, chunk_size=128, chunk_overlap=0
)
sol_docs = sol_splitter.create_documents([SOL_CODE])
sol_docs
[Document(metadata={}, page_content='pragma solidity ^0.8.20;'),
 Document(metadata={}, page_content='contract HelloWorld {\n   function add(uint a, uint b) pure public returns(uint) {\n       return a + b;\n   }\n}')]

C#

다음은 C# 텍스트 분할기를 사용하는 예제입니다:
C_CODE = """
using System;
class Program
{
    static void Main()
    {
        int age = 30; // Change the age value as needed

        // Categorize the age without any console output
        if (age < 18)
        {
            // Age is under 18
        }
        else if (age >= 18 && age < 65)
        {
            // Age is an adult
        }
        else
        {
            // Age is a senior citizen
        }
    }
}
"""
c_splitter = RecursiveCharacterTextSplitter.from_language(
    language=Language.CSHARP, chunk_size=128, chunk_overlap=0
)
c_docs = c_splitter.create_documents([C_CODE])
c_docs
[Document(metadata={}, page_content='using System;'),
 Document(metadata={}, page_content='class Program\n{\n    static void Main()\n    {\n        int age = 30; // Change the age value as needed'),
 Document(metadata={}, page_content='// Categorize the age without any console output\n        if (age < 18)\n        {\n            // Age is under 18'),
 Document(metadata={}, page_content='}\n        else if (age >= 18 && age < 65)\n        {\n            // Age is an adult\n        }\n        else\n        {'),
 Document(metadata={}, page_content='// Age is a senior citizen\n        }\n    }\n}')]

Haskell

다음은 Haskell 텍스트 분할기를 사용하는 예제입니다:
HASKELL_CODE = """
main :: IO ()
main = do
    putStrLn "Hello, World!"
-- Some sample functions
add :: Int -> Int -> Int
add x y = x + y
"""
haskell_splitter = RecursiveCharacterTextSplitter.from_language(
    language=Language.HASKELL, chunk_size=50, chunk_overlap=0
)
haskell_docs = haskell_splitter.create_documents([HASKELL_CODE])
haskell_docs
[Document(metadata={}, page_content='main :: IO ()'),
 Document(metadata={}, page_content='main = do\n    putStrLn "Hello, World!"\n-- Some'),
 Document(metadata={}, page_content='sample functions\nadd :: Int -> Int -> Int\nadd x y'),
 Document(metadata={}, page_content='= x + y')]

PHP

다음은 PHP 텍스트 분할기를 사용하는 예제입니다:
PHP_CODE = """<?php
namespace foo;
class Hello {
    public function __construct() { }
}
function hello() {
    echo "Hello World!";
}
interface Human {
    public function breath();
}
trait Foo { }
enum Color
{
    case Red;
    case Blue;
}"""
php_splitter = RecursiveCharacterTextSplitter.from_language(
    language=Language.PHP, chunk_size=50, chunk_overlap=0
)
php_docs = php_splitter.create_documents([PHP_CODE])
php_docs
[Document(metadata={}, page_content='<?php\nnamespace foo;'),
 Document(metadata={}, page_content='class Hello {'),
 Document(metadata={}, page_content='public function __construct() { }\n}'),
 Document(metadata={}, page_content='function hello() {\n    echo "Hello World!";\n}'),
 Document(metadata={}, page_content='interface Human {\n    public function breath();\n}'),
 Document(metadata={}, page_content='trait Foo { }\nenum Color\n{\n    case Red;'),
 Document(metadata={}, page_content='case Blue;\n}')]

PowerShell

다음은 PowerShell 텍스트 분할기를 사용하는 예제입니다:
POWERSHELL_CODE = """
$directoryPath = Get-Location

$items = Get-ChildItem -Path $directoryPath

$files = $items | Where-Object { -not $_.PSIsContainer }

$sortedFiles = $files | Sort-Object LastWriteTime

foreach ($file in $sortedFiles) {
    Write-Output ("Name: " + $file.Name + " | Last Write Time: " + $file.LastWriteTime)
}
"""
powershell_splitter = RecursiveCharacterTextSplitter.from_language(
    language=Language.POWERSHELL, chunk_size=100, chunk_overlap=0
)
powershell_docs = powershell_splitter.create_documents([POWERSHELL_CODE])
powershell_docs
[Document(metadata={}, page_content='$directoryPath = Get-Location\n\n$items = Get-ChildItem -Path $directoryPath'),
 Document(metadata={}, page_content='$files = $items | Where-Object { -not $_.PSIsContainer }'),
 Document(metadata={}, page_content='$sortedFiles = $files | Sort-Object LastWriteTime'),
 Document(metadata={}, page_content='foreach ($file in $sortedFiles) {'),
 Document(metadata={}, page_content='Write-Output ("Name: " + $file.Name + " | Last Write Time: " + $file.LastWriteTime)\n}')]

Visual Basic 6

VISUALBASIC6_CODE = """Option Explicit

Public Sub HelloWorld()
    MsgBox "Hello, World!"
End Sub

Private Function Add(a As Integer, b As Integer) As Integer
    Add = a + b
End Function
"""
visualbasic6_splitter = RecursiveCharacterTextSplitter.from_language(
    Language.VISUALBASIC6,
    chunk_size=128,
    chunk_overlap=0,
)
visualbasic6_docs = visualbasic6_splitter.create_documents([VISUALBASIC6_CODE])
visualbasic6_docs
[Document(metadata={}, page_content='Option Explicit'),
 Document(metadata={}, page_content='Public Sub HelloWorld()\n    MsgBox "Hello, World!"\nEnd Sub'),
 Document(metadata={}, page_content='Private Function Add(a As Integer, b As Integer) As Integer\n    Add = a + b\nEnd Function')]

Connect these docs programmatically to Claude, VSCode, and more via MCP for real-time answers.
I