- 노드와 엣지로 구성된 그래프 형태로 에이전트를 정의하려면 Graph API 사용하기를 참고하세요.
- 단일 함수 형태로 에이전트를 정의하려면 Functional API 사용하기를 참고하세요.
개념적인 내용은 Graph API 개요와 Functional API 개요를 참고하세요.
이 예제를 실행하려면 Claude (Anthropic) 계정을 만들고 API 키를 발급받아야 합니다. 발급받은 API 키는 터미널에서
ANTHROPIC_API_KEY 환경 변수로 설정해주세요.- Use the Graph API
- Use the Functional API
1. 도구와 모델 정의하기
이 예제에서는 Claude Sonnet 4.5 모델을 사용하고, 덧셈, 곱셈, 나눗셈을 수행하는 도구를 정의합니다.Copy
from langchain.tools import tool
from langchain.chat_models import init_chat_model
model = init_chat_model(
"anthropic:claude-sonnet-4-5",
temperature=0
)
# Define tools
@tool
def multiply(a: int, b: int) -> int:
"""Multiply `a` and `b`.
Args:
a: First int
b: Second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Adds `a` and `b`.
Args:
a: First int
b: Second int
"""
return a + b
@tool
def divide(a: int, b: int) -> float:
"""Divide `a` and `b`.
Args:
a: First int
b: Second int
"""
return a / b
# Augment the LLM with tools
tools = [add, multiply, divide]
tools_by_name = {tool.name: tool for tool in tools}
model_with_tools = model.bind_tools(tools)
2. 상태 정의하기
그래프의 상태는 메시지와 LLM 호출 횟수를 저장하는 데 사용됩니다.LangGraph의 상태는 에이전트 실행 전체에 걸쳐 유지됩니다.
Annotated 타입과 operator.add를 함께 사용하면, 새로운 메시지가 기존 목록을 대체하지 않고 추가되도록 보장합니다.Copy
from langchain.messages import AnyMessage
from typing_extensions import TypedDict, Annotated
import operator
class MessagesState(TypedDict):
messages: Annotated[list[AnyMessage], operator.add]
llm_calls: int
3. 모델 노드 정의하기
모델 노드는 LLM을 호출하고 도구를 호출할지 여부를 결정하는 데 사용됩니다.Copy
from langchain.messages import SystemMessage
def llm_call(state: dict):
"""LLM decides whether to call a tool or not"""
return {
"messages": [
model_with_tools.invoke(
[
SystemMessage(
content="You are a helpful assistant tasked with performing arithmetic on a set of inputs."
)
]
+ state["messages"]
)
],
"llm_calls": state.get('llm_calls', 0) + 1
}
4. 도구 노드 정의하기
도구 노드는 도구를 호출하고 결과를 반환하는 데 사용됩니다.Copy
from langchain.messages import ToolMessage
def tool_node(state: dict):
"""Performs the tool call"""
result = []
for tool_call in state["messages"][-1].tool_calls:
tool = tools_by_name[tool_call["name"]]
observation = tool.invoke(tool_call["args"])
result.append(ToolMessage(content=observation, tool_call_id=tool_call["id"]))
return {"messages": result}
5. 종료 로직 정의하기
조건부 엣지 함수는 LLM이 도구를 호출했는지 여부에 따라 도구 노드로 라우팅하거나 종료하는 데 사용됩니다.Copy
from typing import Literal
from langgraph.graph import StateGraph, START, END
def should_continue(state: MessagesState) -> Literal["tool_node", END]:
"""Decide if we should continue the loop or stop based upon whether the LLM made a tool call"""
messages = state["messages"]
last_message = messages[-1]
# If the LLM makes a tool call, then perform an action
if last_message.tool_calls:
return "tool_node"
# Otherwise, we stop (reply to the user)
return END
6. 에이전트 빌드 및 컴파일하기
에이전트는StateGraph 클래스를 사용하여 빌드하고, compile 메서드로 컴파일합니다.Copy
# Build workflow
agent_builder = StateGraph(MessagesState)
# Add nodes
agent_builder.add_node("llm_call", llm_call)
agent_builder.add_node("tool_node", tool_node)
# Add edges to connect nodes
agent_builder.add_edge(START, "llm_call")
agent_builder.add_conditional_edges(
"llm_call",
should_continue,
["tool_node", END]
)
agent_builder.add_edge("tool_node", "llm_call")
# Compile the agent
agent = agent_builder.compile()
# Show the agent
from IPython.display import Image, display
display(Image(agent.get_graph(xray=True).draw_mermaid_png()))
# Invoke
from langchain.messages import HumanMessage
messages = [HumanMessage(content="Add 3 and 4.")]
messages = agent.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()
Full code example
Full code example
Copy
# Step 1: Define tools and model
from langchain.tools import tool
from langchain.chat_models import init_chat_model
model = init_chat_model(
"anthropic:claude-sonnet-4-5",
temperature=0
)
# Define tools
@tool
def multiply(a: int, b: int) -> int:
"""Multiply `a` and `b`.
Args:
a: First int
b: Second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Adds `a` and `b`.
Args:
a: First int
b: Second int
"""
return a + b
@tool
def divide(a: int, b: int) -> float:
"""Divide `a` and `b`.
Args:
a: First int
b: Second int
"""
return a / b
# Augment the LLM with tools
tools = [add, multiply, divide]
tools_by_name = {tool.name: tool for tool in tools}
model_with_tools = model.bind_tools(tools)
# Step 2: Define state
from langchain.messages import AnyMessage
from typing_extensions import TypedDict, Annotated
import operator
class MessagesState(TypedDict):
messages: Annotated[list[AnyMessage], operator.add]
llm_calls: int
# Step 3: Define model node
from langchain.messages import SystemMessage
def llm_call(state: dict):
"""LLM decides whether to call a tool or not"""
return {
"messages": [
model_with_tools.invoke(
[
SystemMessage(
content="You are a helpful assistant tasked with performing arithmetic on a set of inputs."
)
]
+ state["messages"]
)
],
"llm_calls": state.get('llm_calls', 0) + 1
}
# Step 4: Define tool node
from langchain.messages import ToolMessage
def tool_node(state: dict):
"""Performs the tool call"""
result = []
for tool_call in state["messages"][-1].tool_calls:
tool = tools_by_name[tool_call["name"]]
observation = tool.invoke(tool_call["args"])
result.append(ToolMessage(content=observation, tool_call_id=tool_call["id"]))
return {"messages": result}
# Step 5: Define logic to determine whether to end
from typing import Literal
from langgraph.graph import StateGraph, START, END
# Conditional edge function to route to the tool node or end based upon whether the LLM made a tool call
def should_continue(state: MessagesState) -> Literal["tool_node", END]:
"""Decide if we should continue the loop or stop based upon whether the LLM made a tool call"""
messages = state["messages"]
last_message = messages[-1]
# If the LLM makes a tool call, then perform an action
if last_message.tool_calls:
return "tool_node"
# Otherwise, we stop (reply to the user)
return END
# Step 6: Build agent
# Build workflow
agent_builder = StateGraph(MessagesState)
# Add nodes
agent_builder.add_node("llm_call", llm_call)
agent_builder.add_node("tool_node", tool_node)
# Add edges to connect nodes
agent_builder.add_edge(START, "llm_call")
agent_builder.add_conditional_edges(
"llm_call",
should_continue,
["tool_node", END]
)
agent_builder.add_edge("tool_node", "llm_call")
# Compile the agent
agent = agent_builder.compile()
from IPython.display import Image, display
# Show the agent
display(Image(agent.get_graph(xray=True).draw_mermaid_png()))
# Invoke
from langchain.messages import HumanMessage
messages = [HumanMessage(content="Add 3 and 4.")]
messages = agent.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()
Connect these docs programmatically to Claude, VSCode, and more via MCP for real-time answers.