langgraph는 LLM을 사용하여 상태를 가진 다중 액터 애플리케이션을 구축하기 위한 라이브러리로, 에이전트 및 멀티 에이전트 워크플로우를 생성하는 데 사용됩니다. langgraph 그래프를 평가하는 것은 까다로울 수 있는데, 단일 호출이 여러 LLM 호출을 포함할 수 있고, 어떤 LLM 호출이 이루어질지가 이전 호출의 출력에 따라 달라질 수 있기 때문입니다. 이 가이드에서는 evaluate() / aevaluate()에 그래프와 그래프 노드를 전달하는 방법의 메커니즘에 초점을 맞출 것입니다. 에이전트를 구축할 때의 평가 기법과 모범 사례에 대해서는 langgraph 문서를 참조하세요.
엔드투엔드 평가
가장 일반적인 평가 유형은 엔드투엔드 평가로, 각 예제 입력에 대한 최종 그래프 출력을 평가하고자 하는 것입니다.그래프 정의
간단한 ReACT 에이전트를 먼저 구성해 보겠습니다:Copy
from typing import Annotated, Literal, TypedDict
from langchain.chat_models import init_chat_model
from langchain.tools import tool
from langgraph.prebuilt import ToolNode
from langgraph.graph import END, START, StateGraph
from langgraph.graph.message import add_messages
class State(TypedDict):
# Messages have the type "list". The 'add_messages' function
# in the annotation defines how this state key should be updated
# (in this case, it appends messages to the list, rather than overwriting them)
messages: Annotated[list, add_messages]
# Define the tools for the agent to use
@tool
def search(query: str) -> str:
"""Call to surf the web."""
# This is a placeholder, but don't tell the LLM that...
if "sf" in query.lower() or "san francisco" in query.lower():
return "It's 60 degrees and foggy."
return "It's 90 degrees and sunny."
tools = [search]
tool_node = ToolNode(tools)
model = init_chat_model("claude-3-5-sonnet-latest").bind_tools(tools)
# Define the function that determines whether to continue or not
def should_continue(state: State) -> Literal["tools", END]:
messages = state['messages']
last_message = messages[-1]
# If the LLM makes a tool call, then we route to the "tools" node
if last_message.tool_calls:
return "tools"
# Otherwise, we stop (reply to the user)
return END
# Define the function that calls the model
def call_model(state: State):
messages = state['messages']
response = model.invoke(messages)
# We return a list, because this will get added to the existing list
return {"messages": [response]}
# Define a new graph
workflow = StateGraph(State)
# Define the two nodes we will cycle between
workflow.add_node("agent", call_model)
workflow.add_node("tools", tool_node)
# Set the entrypoint as 'agent'
# This means that this node is the first one called
workflow.add_edge(START, "agent")
# We now add a conditional edge
workflow.add_conditional_edges(
# First, we define the start node. We use 'agent'.
# This means these are the edges taken after the 'agent' node is called.
"agent",
# Next, we pass in the function that will determine which node is called next.
should_continue,
)
# We now add a normal edge from 'tools' to 'agent'.
# This means that after 'tools' is called, 'agent' node is called next.
workflow.add_edge("tools", 'agent')
# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable.
# Note that we're (optionally) passing the memory when compiling the graph
app = workflow.compile()
데이터셋 생성
질문과 예상 응답으로 구성된 간단한 데이터셋을 생성해 보겠습니다:Copy
from langsmith import Client
questions = [
"what's the weather in sf",
"whats the weather in san fran",
"whats the weather in tangier"
]
answers = [
"It's 60 degrees and foggy.",
"It's 60 degrees and foggy.",
"It's 90 degrees and sunny.",
]
ls_client = Client()
dataset = ls_client.create_dataset(
"weather agent",
inputs=[{"question": q} for q in questions],
outputs=[{"answers": a} for a in answers],
)
평가자 생성
그리고 간단한 평가자를 만들어 보겠습니다:langsmith>=0.2.0 필요
Copy
judge_llm = init_chat_model("gpt-4o")
async def correct(outputs: dict, reference_outputs: dict) -> bool:
instructions = (
"Given an actual answer and an expected answer, determine whether"
" the actual answer contains all of the information in the"
" expected answer. Respond with 'CORRECT' if the actual answer"
" does contain all of the expected information and 'INCORRECT'"
" otherwise. Do not include anything else in your response."
)
# Our graph outputs a State dictionary, which in this case means
# we'll have a 'messages' key and the final message should
# be our actual answer.
actual_answer = outputs["messages"][-1].content
expected_answer = reference_outputs["answer"]
user_msg = (
f"ACTUAL ANSWER: {actual_answer}"
f"\n\nEXPECTED ANSWER: {expected_answer}"
)
response = await judge_llm.ainvoke(
[
{"role": "system", "content": instructions},
{"role": "user", "content": user_msg}
]
)
return response.content.upper() == "CORRECT"
평가 실행
이제 평가를 실행하고 결과를 탐색할 수 있습니다. 예제에 저장된 형식으로 입력을 받을 수 있도록 그래프 함수를 래핑하기만 하면 됩니다:그래프 노드가 모두 동기 함수로 정의되어 있다면
evaluate 또는 aevaluate를 사용할 수 있습니다. 노드 중 하나라도 비동기로 정의되어 있다면 aevaluate를 사용해야 합니다langsmith>=0.2.0 필요
Copy
from langsmith import aevaluate
def example_to_state(inputs: dict) -> dict:
return {"messages": [{"role": "user", "content": inputs['question']}]}
# We use LCEL declarative syntax here.
# Remember that langgraph graphs are also langchain runnables.
target = example_to_state | app
experiment_results = await aevaluate(
target,
data="weather agent",
evaluators=[correct],
max_concurrency=4, # optional
experiment_prefix="claude-3.5-baseline", # optional
)
중간 단계 평가
에이전트의 최종 출력뿐만 아니라 중간 단계도 평가하는 것이 유용한 경우가 많습니다.langgraph의 장점은 그래프의 출력이 이미 중간 단계에 대한 정보를 포함하고 있는 상태 객체라는 것입니다. 일반적으로 상태의 메시지를 살펴봄으로써 관심 있는 모든 것을 평가할 수 있습니다. 예를 들어, 메시지를 살펴봄으로써 모델이 첫 번째 단계로 ‘search’ 도구를 호출했는지 확인할 수 있습니다.
langsmith>=0.2.0 필요
Copy
def right_tool(outputs: dict) -> bool:
tool_calls = outputs["messages"][1].tool_calls
return bool(tool_calls and tool_calls[0]["name"] == "search")
experiment_results = await aevaluate(
target,
data="weather agent",
evaluators=[correct, right_tool],
max_concurrency=4, # optional
experiment_prefix="claude-3.5-baseline", # optional
)
커스텀 평가자에 전달할 수 있는 인수에 대한 자세한 내용은 이 방법 가이드를 참조하세요.
Copy
from langsmith.schemas import Run, Example
def right_tool_from_run(run: Run, example: Example) -> dict:
# Get documents and answer
first_model_run = next(run for run in root_run.child_runs if run.name == "agent")
tool_calls = first_model_run.outputs["messages"][-1].tool_calls
right_tool = bool(tool_calls and tool_calls[0]["name"] == "search")
return {"key": "right_tool", "value": right_tool}
experiment_results = await aevaluate(
target,
data="weather agent",
evaluators=[correct, right_tool_from_run],
max_concurrency=4, # optional
experiment_prefix="claude-3.5-baseline", # optional
)
개별 노드 실행 및 평가
시간과 비용을 절약하기 위해 단일 노드를 직접 평가하고 싶을 때가 있습니다.langgraph는 이를 쉽게 수행할 수 있게 해줍니다. 이 경우 우리가 사용해 온 평가자를 계속 사용할 수도 있습니다.
Copy
node_target = example_to_state | app.nodes["agent"]
node_experiment_results = await aevaluate(
node_target,
data="weather agent",
evaluators=[right_tool_from_run],
max_concurrency=4, # optional
experiment_prefix="claude-3.5-model-node", # optional
)
관련 문서
참조 코드
통합된 코드 스니펫을 보려면 클릭하세요
통합된 코드 스니펫을 보려면 클릭하세요
Copy
from typing import Annotated, Literal, TypedDict
from langchain.chat_models import init_chat_model
from langchain.tools import tool
from langgraph.prebuilt import ToolNode
from langgraph.graph import END, START, StateGraph
from langgraph.graph.message import add_messages
from langsmith import Client, aevaluate
# Define a graph
class State(TypedDict):
# Messages have the type "list". The 'add_messages' function
# in the annotation defines how this state key should be updated
# (in this case, it appends messages to the list, rather than overwriting them)
messages: Annotated[list, add_messages]
# Define the tools for the agent to use
@tool
def search(query: str) -> str:
"""Call to surf the web."""
# This is a placeholder, but don't tell the LLM that...
if "sf" in query.lower() or "san francisco" in query.lower():
return "It's 60 degrees and foggy."
return "It's 90 degrees and sunny."
tools = [search]
tool_node = ToolNode(tools)
model = init_chat_model("claude-3-5-sonnet-latest").bind_tools(tools)
# Define the function that determines whether to continue or not
def should_continue(state: State) -> Literal["tools", END]:
messages = state['messages']
last_message = messages[-1]
# If the LLM makes a tool call, then we route to the "tools" node
if last_message.tool_calls:
return "tools"
# Otherwise, we stop (reply to the user)
return END
# Define the function that calls the model
def call_model(state: State):
messages = state['messages']
response = model.invoke(messages)
# We return a list, because this will get added to the existing list
return {"messages": [response]}
# Define a new graph
workflow = StateGraph(State)
# Define the two nodes we will cycle between
workflow.add_node("agent", call_model)
workflow.add_node("tools", tool_node)
# Set the entrypoint as 'agent'
# This means that this node is the first one called
workflow.add_edge(START, "agent")
# We now add a conditional edge
workflow.add_conditional_edges(
# First, we define the start node. We use 'agent'.
# This means these are the edges taken after the 'agent' node is called.
"agent",
# Next, we pass in the function that will determine which node is called next.
should_continue,
)
# We now add a normal edge from 'tools' to 'agent'.
# This means that after 'tools' is called, 'agent' node is called next.
workflow.add_edge("tools", 'agent')
# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable.
# Note that we're (optionally) passing the memory when compiling the graph
app = workflow.compile()
questions = [
"what's the weather in sf",
"whats the weather in san fran",
"whats the weather in tangier"
]
answers = [
"It's 60 degrees and foggy.",
"It's 60 degrees and foggy.",
"It's 90 degrees and sunny.",
]
# Create a dataset
ls_client = Client()
dataset = ls_client.create_dataset(
"weather agent",
inputs=[{"question": q} for q in questions],
outputs=[{"answers": a} for a in answers],
)
# Define evaluators
async def correct(outputs: dict, reference_outputs: dict) -> bool:
instructions = (
"Given an actual answer and an expected answer, determine whether"
" the actual answer contains all of the information in the"
" expected answer. Respond with 'CORRECT' if the actual answer"
" does contain all of the expected information and 'INCORRECT'"
" otherwise. Do not include anything else in your response."
)
# Our graph outputs a State dictionary, which in this case means
# we'll have a 'messages' key and the final message should
# be our actual answer.
actual_answer = outputs["messages"][-1].content
expected_answer = reference_outputs["answer"]
user_msg = (
f"ACTUAL ANSWER: {actual_answer}"
f"\n\nEXPECTED ANSWER: {expected_answer}"
)
response = await judge_llm.ainvoke(
[
{"role": "system", "content": instructions},
{"role": "user", "content": user_msg}
]
)
return response.content.upper() == "CORRECT"
def right_tool(outputs: dict) -> bool:
tool_calls = outputs["messages"][1].tool_calls
return bool(tool_calls and tool_calls[0]["name"] == "search")
# Run evaluation
experiment_results = await aevaluate(
target,
data="weather agent",
evaluators=[correct, right_tool],
max_concurrency=4, # optional
experiment_prefix="claude-3.5-baseline", # optional
)
Connect these docs programmatically to Claude, VSCode, and more via MCP for real-time answers.